SEMESTER 1 ASSESSMENT PAPER 2023/2024

CONTROL ENGINEERING

DURATION - 2 hours

This paper contains four questions.

All answers must be in separate answer books.

Answer **ALL** questions.

An outline marking scheme is shown in brackets to the right of each question.

Linear-Logarithmic Graph Paper is provided with this examination paper.

A table of Laplace Transforms is given at the end of this examination paper.

Only University approved calculators may be used.

[8]

Q1.

Consider a two-degree-of-freedom mechanical system shown in Figure Q1.

2

- (a) Write the dynamic equations for the mechanical system.
- (b) Show that the transfer function between the input f(t) and the output $x_2(t)$ using Laplace transform is $\frac{k}{s(mc s^2+mk s+kc)}$ when initial conditions are zero.

(c) Find the time response $x_2(t)$ to a unit impulse input $f(t) = \delta(t)$ using inverse Laplace transform with zero initial conditions when m = 1kg, c = 1Ns/m and k = 4N/m.

[Total: 25 marks]

[8]

[9]

Q2.

Copyright 2023

Consider the block diagram shown in Figure Q2.

- (a) Simplify the block diagram and obtain the closed-loop transfer function $\frac{Y(s)}{R(s)}$.
- (b) Use the Routh-Hurwitz criterion to find the range of *K* for which the closed-loop system is stable.
- (c) Calculate the natural frequency and the peak time $t_p = \frac{\pi}{\omega_d}$ when K = 8.
 - [5]
- (d) Sketch the root locus for the open-loop transfer function $\frac{K}{(s+5)(s+10)}$ when *K* varies from zero to infinity.

$$\xrightarrow{+} \overbrace{\frac{1}{s+5}} \xrightarrow{+} \overbrace{\frac{K}{s+10}} \xrightarrow{K} \underbrace{Y(s)}$$

Figure Q2

[Total: 25 marks]

.

[5]

[6]

[9]

[5]

[4]

Q3.

Consider the unity feedback system shown in Figure Q3. The transfer function for the plant is $G(s) = \frac{(s+2)}{s(s+1)(s+10)}$.

- (a) Determine the value of gain K such that the steady state error to a unit ramp input is equal to 0.01.
- (b) Find the value of K such that one of the closed-loop pole is at s = -5.
- (c) Draw the magnitude and phase of the Bode plot for the open-loop transfer function KG(s) when K = 1.

[Total: 25 marks]

WMBE024-05

Consider an electrical system shown in Figure Q4.

Q4.

- (a) Write the equations of motion for the system and plot the block diagram for the differential equations.
- (b) Write the equations of motion in the state-space form using the state vector $\begin{bmatrix} q_1 \\ q_2 \\ \dot{q}_1 \\ \dot{q}_2 \end{bmatrix}$ where the charge is $q(t) = \frac{di(t)}{dt}$, and i(t) is the current.
- (c) Write the equation for the output voltage across the resistor $V_o(s)$ in the state space form using the state vector as above.

[5]

[10]

[10]

6

Laplace Transforms:

x(t)	X(s)
Unit impulse $\delta(t)$	1
Unit step $u(t)$	$\frac{1}{s}$
t^n , $n = 1, 2,$	$\frac{n!}{s^{n+1}}$
e^{-at}	$\frac{1}{s+a}$
sin <i>wt</i>	$\frac{\omega}{s^2 + \omega^2}$
cos <i>wt</i>	$\frac{s}{s^2 + \omega^2}$
$t^n e^{-at}, n = 1, 2,$	$\frac{n!}{(s+a)^{n+1}}$

																I
																I
																I

END OF PAPER